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Abstract —Driven by the ability to generate ever-larger, increasingly complex data, there is an urgent need in the scienti c comm unity
for scalable analysis methods that can rapidly identify salient trends in scienti ¢ data. Query-Driven Visualization ( QDV) strategies are
among the small subset of techniques that can address both large and highly complex datasets. This paper extends the utility of QDV
strategies with a statistics-based framework that integrates non-parametric distribution estimation techniques with a new segmentation
strategy to visually identify statistically signi cant tr ends and features within the solution space of a query. In this framework, query
distribution estimates help users to interactively explore their query's solution and visually identify the regions where the combined
behavior of constrained variables is most important, statistically, to their inquiry. Our new segmentation strategy extends the distribution
estimation analysis by visually conveying the individual importance of each variable to these regions of high statistical signi cance. We
demonstrate the analysis bene ts these two strategies prov ide and show how they may be used to facilitate the re nement o f constraints
over variables expressed in a user's query. We apply our method to datasets from two different scienti c domains to demon strate its
broad applicability.

Index Terms —Query-Driven Visualization, Multivariate Analysis, Kernel Density Estimation.
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1 INTRODUCTION to techniques based on brushing with linked views [4], [23],
[40]; both visual-exploratory approaches employ a usatedr
SCIENTIFIC visualization accelerates the discovery Procestocess for selecting and highlighting important trends in
in contemporary science by transforming abstract datair‘ggmmex data. Unlike brushing methods, however, QDV is
a visual representation that readily conveys comprehmsiqnherenuy and tightly coupled with database technologies
meaningful information to the scientist. In the scienti isd gjjow QDV strategies to be readily applied to large-scaleda
covery process, Bergeron [6] identi es three functionaldale  Query-based visualization research successfully adesess
ities for visualization use: visual-discovery, visuatina-based many important areas such as scalability and performarie [1
analysis, and presentation visualization. [37], visualizing multitemporal data [13], [16], applyir@DV
Discovery visualization strategies are employed earhhe t strategies to adaptively meshed domains [16], addressing u
scienti ¢ discovery process during initial stages of ini@a- certainty in multivariate queries [13], and extending quer
tion. These strategies are designed to help scientistsvencthased strategies to address the challenges of visualizing
new trends or features in data where the scientist is unsurgunction eld data [1]. Researchers have also successfully
due to the complexity of the data or the unde ned nature @ombined domain-speci ¢ knowledge with QDV, e.g., to study
the event being studied—what trends or anomalies to look f@letwork traf ¢ [5] or combustion ame fronts [15].
Such strategies typically demand a great deal of I/O barttiwid Comparatively little work, however, has been performed
and computation to support high levels of user interagtivit on the explicit study of query solutions, i.e. the set of
Query-based methods are class of highly effective disgovaecords selected by a scientist's multidimensional Baolea
visualization strategies. One query-based approach, yQueatange query. This underdeveloped area of research highligh
Driven Visualization (QDV), is an extremely powerful sggy a central problem for query-based strategies like QDV: avhil
that couples scalable database indexing technologies, lgolutions to queries can help scientists identify inténgst
FastBit [41], [42], [43] and DP-BIS [18], with visualizatio visual features, trends, or anomalies within their data, ex
techniques to efciently manage large-scale data, perforisting query-based research offers little assistance lpirig
rapid data analysis, and support unconstrained, intgeactscientists to better understand these events. Combustioe
exploration of complex data [13], [15], [16], [37]. fronts, vortices, chemical reaction fronts are all exampé
The term “Query-Driven Visualization” refers to the stig¢e very complex scienti c phenomenon. Obtaining greaterghsi
of restricting computation and cognitive workloads exslely into these events with QDV (e.g., their formation, duration
to records de ned to be “interesting” by the scientist. Thiand evolution) requires understanding how all variables—
strategy is realized through the evaluation of user-speki pressure, temperature, etgaintly interact within the solution
multidimensional Boolean range queries—etgn{peraturec  space of a query. Further, scientists must be able to analyze
1200) AND (pressure> 2:4)—that rapidly lter away large and understand individual variable trends within the ceinte
portions of non-pertinent data, and allow smaller, more imf these joint interactions—e.g. among all chemical species
teresting subsets of data to be ef ciently analyzed and-viswithin the ame front region, which chemical radicals aresho
alized. QDV provides a exible analysis component similasigni cant to the joint trends driving the combustion pres@



The challenge is to extend the strengths of QDV with new re ne the constraints over individual variables in a mul-
analysis methods that can help QDV users better understand tivariate query.

the solutions to their queries. Such strategies are esbéoti  \ye gemonstrate these methods across data from different
scientists to progress from stages of discovery visuatinab application domains. Furthermore, we perform all statiti
stages of visual analysis and presentation. This work egten ;o processing on the graphics processing unit (GPU) to
the utility of QDV with a statistical framework that enableg,ijitate quick response times for the QDV user.

scientists to attain greater levels of insight into the dead In the next section, we discuss work that is germane to

and anomalies ident ed by QD.V applications. With thISour efforts. In Section 3 we present our statistical proocess
framework, QDV users can identify: framework, and approach for creating surfaces and segmen-
the individual signi cance (e.g. central statistical temd tations of query solutions. Our surfacing and segmentation
cies and important trends) of each variable to the queryésables meaningful query visualization and analysis, as we
solution in the comparative context of all other variableshow in Section 4. We conclude by addressing important im-
constrained by the query; plementation issues, with a discussion of GPU implemeoriati
the salientjoint trends (i.e. trends based on the behawnd performance in Section 5.
ior and interaction ofall variables combined) that are
characteristically important to understanding the query'
solution; and, _ o 2 PREVIOUS WORK
how to adjust individual variable constraints in a query
to focus on, or exclude, these newly identi ed trends i2.1 Distribution Estimation in Image Processing and
subsequent searches. Computer Vision

The new insight provided by our statistical framework willy the image processing community, distribution functions
help to accelerate scientists from stages of visual-d&gov ang methods for estimating distributions, e.g., kernelsign
into stages of visual analysis and presentation. estimates (KDE) [33], [34], are used primarily for image
In our framework, the “statistical structure” of a query igjassij cation—i.e. a Boolean segmentation of the image into
composed of two statistical measures: a global measure thaions of interest and regions of non-interest. For exampl
takes into account all variables constrained by the quew, azhang and Yang [46] utilize KDE and statistical analysis to
a segmentation, which is based on the localized statisti¢fliect and isolate moving objects of interest, e.g. peidestr
contribution of all variables to the query’'s solution. cars, etc., from streaming images. Liu et al. [28] also demon
The global measure is comprised of the estimated joisfrate a KDE-based probabilistic framework for image dtass
distribution of the query's solution space. Exploring tlosmt  cation. They use probability distribution functions baksen
distribution allows QDV users to interactively explore ithe 3 hybrid KDE and Gaussian Mixture Model (GMM) to iso-
query's solution and visually identify the regions where thjate moving objects from movie frames while simultaneously
combinedbehavior of constrained variables is most importafémoving artifacts like shadows and obstructing foregebun
or interesting to their search. To provide further insighibi Mean shift clustering [9], [12], [45], which is based
the query’s joint distribution, we introduce a new segmeate on the mean shift procedure presented by Fukunaga and
strategy that extends the distribution estimation anaysi Hostetler [11], is a common, non-parametric segmentation
visually conveying thendividual importance of each Variabletechnique used in computer vision research to facilitaéufe
to these regions of high statistical signi cance. The 9|0b%pace analysis. In mean shift clustering, the feature space
and localized measures, when integrated together, &eilitof the image is modeled by its estimated joint distribution
a means for re ning _variable constraints express_e_d in “l@btained through KDE methods). Comaniciu and Meer [9]
QDV user's query. This framework addresses a critical ne@fow that the dense regions in the feature space of the image
in query-based research by providing a domain-agnostic gfrectly correspond to local maxima in the image's estirdate
proach that solidi es a path for discovery visualizatioRsto gint distribution. Segmentation of the image is realized b
take in order to begin understanding the events and ancsnai;gsigmng pixels in feature space to the modality nearest th
they have identi ed in their data. pixel in the image's estimated joint distribution. There is
The main contributions of this work include the fOIlOWing: thus one unique Segment in the image for every unique local
We introduce a statistics-based framework that exten@®xima in the image's distribution estimate.
the utility of QDV strategies by helping users to better A fundamental difference between the segmentation gener-
understand the solutions to their queries. The core afed by mean shift clustering and our segmentation strategy
this framework is based on a strategy that integratésthat mean shift clustering is driven by the gradient of the
non-parametric distribution estimation techniques with estimated joint distribution, whereas our segmentatidrased
new segmentation strategy to visually identify statidlyca on the localized statistical signi cance each variableyplin
important variable trends—both individual variable trendsonstructingthe joint distribution. Hence, mean shift clustering
and joint trends for groups of variables—within theis a post-process performeafter the KDE calculation, and
solution space of a query. our segmentation is obtainelliring the process of calculating
We show how users can use the information obtaindde KDE. In Section 3.3 we discuss this difference more
from the query's joint distribution and segmentation téhoroughly when we introduce our segmentation procedure.



2.2 Distributions in Visualization Linsen et al. [27] focus on feature space analysis for
Smoothed Particle Hydrodynamic (SPH) simulations with a
In the visualization community distribution functions,ge. §.dimensional binning strategy to estimate distributidas
histograms [22], support and facilitate a wide variety &k& gpH-pased scattered data. The resulting distributiorsgige
For example, the volume reconstruction equation used ¢ hierarchical distribution-based clustering of featspace.
splatting utilize; a Qistribut.ion function to calculated.aspread. However, in comparison to our approach, their method cannot
the color contribution a given voxel makes to a pixel regioge ysed to examine the in uence individual variables have in
in screen space [38]. Westover [39] shows the model usgg gistribution or the distribution generated by the speci
to construct the splatting distribution function (e.g. Gsian, gypset contained in a query's solution set.
bilinear) dramatically in uences the quality of the renddr  ouery-driven visualization offers a rich setting in whiah t
image during the splatting process. Craw s and Max [1Qmploy distribution functions for analysis. In the followg
present a cubic spline function for splatting that suppbd  section we apply a statistics-based framework to generate a
accurate rendering from all viewing directions and gem=atisint distribution function for a query's solution. We usteis
images superior to those rendered with a Gaussian distibutgjsribution to construct accurate surfaces that indieetere
kernel. Mueller et al. [31] use distribution kernels of Viay  jmportant regions of interest lie within the solution spade
size, where the kernel size is based on a given voxefige query. We also generate a segmentation, based on the
distance to the viewing plane, to effectively amelioratasihg  contributing distribution of all variables, in order to iate
artifacts in splatting. This type of approach is particylar 5nq visualize important statistical features of interestrf the

effective when the volume resolution is higher than the ienagy ery. This segmentation can be used to help re ne variable

resolution. constraints in the query in order to further investigatdarsg
Histograms are also used extensively in volume renderingf. interest.

Ledergerber et al. [26] utilize a moving least squares ntetho
reconstruct the underlying distribution of a series of getimts

: . METHOD
along a single ray. They use the reconstructed distribution ) o .
to volume render high-quality images with accurate shadinguery-Driven Visualization (QDV) is based upon the evalu-
Kniss et al. [25] combine the underlying distribution fungs ~ation and direct visualization of queries over large scient
of scalar data values with data attributes, such as gradi€dfa [37]. Queries typically take the form of Boolean range
magnitude, to derive 2D and 3D transfer functions. The§@nstraints upon individual variables of multivariatealathe
transfer functions provide a powerful and intuitive way toSolution” to a query are the regions of a dataset for which
rapidly isolate important visual features (e.g. surfaces) the varlables satlsfy the range constraints. _
multivariate data that are not able to be isolated with sy~ Consider a functiorf : R*!  R?, and a query comprised of
transfer functions. Finally, Lundstrom et al.[30] combimger lower and upper limitsa and b respectively, upon the range
domain knowledge, in the form of local histogram criterigpi  ©f f. The solutionQ to the query may then be de ned as:
e.lcertalnty—.based classi cation §trategy to create tgrl’sfnc— Q:=fp2R%a x bg
tions for direct volume rendering. They apply their strateg
on magnetic resonance data and show that their construcidtbrea;b 2 R%, andx is the vector of variable values asso-

plexity, histogram distributions, and geometric statist{i.e., ~ Classically, query solution sets have been visualized by
the area, volume, and gradient magnitude correspondinguging a straightforward depiction of their data constitagne.
the surface of a given isovalue) has been established by Qe@ints or cells). This visualization is carried out by reradg
et al. [7] and Scheidegger et al. [35]. Scheidegger et &ach cell that passes the query as a hexahedral cube [1F], [37
show that isosurface statistics and histograms convergfeeto Or a solid sphere [13]. An example of this type of rendering
same results. They extend this nding by showing how thei shown in Fig. 1. In this image, regions of low pressure
techniques can be seen as a way to calculate expectatidg high pressure are observed in a hurricane dataset. These
of random variables on isosurfaces. Bajaj et al. [2] compukggions correspond to areas where pressure is less thad -150
geometric statistics of isolines and isosurfaces and aljsplPascal (green at center), or above 250 Pascal (blue).
them in an interface to assist users performing discovesy-vi Isosurfaces too can be used to visualize query solution sets
alization tasks. In this work, contour trees are used toideov by de ning the functionh: R41 [0;1]
global structure to the observed statistical measuresderdo 0 if

oo ) : , _ PZQ
provide visual cues to the user about interesting and iraport (h HP= 1 020
isovalues in scalar data. This work presents an excellehtdo
guide scientists tasked with visual discovery. Unfortehatas Visualizing the surfacéh f) 1(0:5) approximates the bound-
the authors' strategy focuses on scalar eld data, the wodsd ary containingQ with a single surface and more smoothly than
not immediately lend itself to the challenges of visualigincell or sphere-based renderings.
multivariate data; for example, the important trends olesgtr  In our approach, however, by estimating the joint distribu-
between multiple variables in high dimensional data. tion of the p2 Q, we are able to provide not only a single,



multiple samples from one or more variables. Consider a set

f:R¥! R The estimationf for the underlying distribution
of f is: _

18 x x

m]i?lK h 1 (1)

f(x=

whereh is the kernel bandwidth parameter for smoothing, and
K is a Gaussian kernel:

x2
K(x) = pljexp z: (2)
2p

To determine the kernel bandwidth parameter, we employ
Fig. 1. This gure depicts a typical cell-based rendering used ~ @n adaptive estimate spreamhethod [36]. This method has
to visualize query solutions in Query-Driven Visualization. In been shown to work well for unimodal distributions, while
this image, regions of low pressure (green, at center) and high  not over-smoothing features in multimodal distributions:
pressure (blue) are visualized for a query that selects regions
where pressure is less than -1500 Pascal, or above 250 Pascal. h:=0:9 min s2 i N %; A3)
1:34
wheres? andR are the standard deviation and inner quartile
accurate surface that depicts the query's boundary, bat atange for the data samples, respectively.
provide information to the QDV user that enables them to In our work we apply KDE over the solution set of a
better understand their query's solution. query. Thus the data samples are the multivariate val@eR?
For example, consider the solution set of a query thaerresponding to the points2 Q. Correspondingly, we must
constrains multiple variables from a turbulent combustiogpnstruct the joint distribution estimate over multivégiaata
dataset: e.g. temperature, pressure, as well as chemexiésp samples, where the multivariate KDE is de nled:

such as methaneCH,), water H20), and hydroxyl radicals 1 N d i x
(OH). The isosurface corresponding to the lowest, non-zero f)= ——o é (~) Kk 20 . (4)
estimated density in the query's joint distribution (see th N é‘f=lhj i=1j=1 hj

de nition of Syjn in Section 3.2) de nes the accurate, smooth , ) ,

boundary for the query's solution. Isosurfaces corresjrand Here We use unique, per-variable kernel bandwidth parasete
to areas of slightly increased density can indicate areasevhi computed using (3) to evaluate this multivariate Gaussian
individual variable distributions are simultaneously irstate K€mel-

of transition. With respect to our combustion example, ¢hes

regions can indicate where the concentration of chemicaR Visualizing Queries Using Their Distribution

species and values for temperature and pressure @l  previous QDV surfaces have presented a “blocky”, binary
changing rapidly within the query region; such areas can Beparation of space due to a lack of interpolation away from
indicative of important events such as ame fronts, exioitt points returned by the query engine [37]. In the previous
regions etc. Isosurfaces corresponding to areas of highitslensection we de ned the construction of distribution estiesat
indicate regions where variables possess increasedtistitis for a multivariate query's solution space. Now, we utilibese
signi cance. Speci cally these regions, and the corresfiog  estimates to de ne surfaces that bound query regions.
range of values associated with each variable in thesemggio From a joint distribution estimate, a new scalar eyt
indicate the locations and range of values for each varialf¢ | R is formed, whereg maps all elementg 2 Q to
that best characterize, statistically, the query's sohuti their distribution values computed in (4). Elements owtdite
The foundation of our method is the computation of thgolution set, i.ep 2 Q, are set to zero because they do not
Underlying jOint variable distribution for multivariateath contribute to the quer 'S under|ying distribution:
within a query solution (Section 3.1). Using this joint dis- .
tribution estimate, we describe the construction of sesac a(p) = f(f(p)) if p2Q,
from the distribution elds (Section 3.2). Finally, we deen 0 otherwise.
a segmentation of the query solution based on the localized
statistical signi cance each variable plays donstructingthe
joint distribution (Section 3.3).

We can use the clamped distribution estimate e@do
construct surfaces that contain the solution space of teeyqu

To generate a surface that bounds the query solution, we
S o ) observe that there will be some elemeplt™ 2 Q with a

3.1 Distribution Estimation for Queries minimum, non-zero distribution value. The solution to the
We begin our query analysis by constructing a distributioquery may then be visualized by the isosurfatg™") 1. We
estimation for the multivariate solution space of a queryefer to such a surface as the “minimum distribution surface
Kernel Density Estimation (KDE) can be applied to develoand denote it simply aSyin. Because we map multivariate data
a statistical model of the underlying functional behaviofir samples to a scalar kernel density estimates (KDE), we can



visualize query surfaces with common isosurfacing alpong
such as Marching Cubes [29] or raycasting.

Giveng:R®! R, it is possible to visualize surfaces cor-
responding to higher distribution values th&gi,, with the
goal of query analysis and re nement. Surfaces formed from
increasingly higher distribution values will contain thegions
for which data samples are more representative of the tatal d
selected by the user's query. By examining these surfabes, t
user is able to re ne their variable constraints intuitivéh a
visual manner, and without losing the information criti¢al
their query.

We illustrate this re nement procedure in Fig. 2. In 2b,
we see the estimated distribution constructed from elesnent
p2 Q by a query selecting regions of low pressure in a
hurricane dataset: pressure 1500 Pascal. Exploring this
distribution with isosurfaces corresponding to incregsilis-
tribution values can help the user to locate new visual featu
and re ne the constraints of the original query. We illustra
this constraint re nement in Fig. 2a; we see the surface
corresponding to the original query's solution for low e
in the bottom image (blue). This surface corresponds to the (a)
minimum distribution surfaceSy,. Using transparency, we
see the effect of examining surfaces for distribution value
greater thargmin; moving up from the bottom image in Fig. 2a,
elements with distribution values greater than 0.05 (blue-
green), 0.08 (green), and 0.12 (red). Note that these ifsaas
also correspond to selecting an increasingly smaller $udise
points p 2 Q with high distribution values. From Fig. 2b we
see that these subsets also correspond to an increasiiigrti
range of values for pressure. With this type of exploratibe,
user can visually explore the solution (i.e. distributioh}heir
guery to obtain information regarding the distribution agbr
of its variables.

3.3 Multivariate Query Segmentation

When visualizing an estimated joint distribution consteuaict (b)

from (4), localized regions containing high distributioalv Fig, 2. This gure visualizes distribution data calculated from a
ues can be the result of a single variable's contribution, Query that selects regions of low pressure in a hurricane dataset:
the cumulative contribution of several variables. To gafeer pressure  -1500 Pascal. (a) shows speci ¢ isosurfaces corre-
deeper insight into the query solution and help the useebetfPonding to decreasing statistical density in this data: (top to

. . L . .. hpttom) 0.12, 0.08, 0.05, and 0.015, where the surface rendered
understand regions of local maxima and minima in the joitlt™ "0 /=" e Swin surface for the query. (b) relates these

distribution, we employ a strategy of feature analysisugto gjstribution values to an increasingly re ned range of values

segmentation. constrained by the query: e.g., the blue surface contains values
There are many multi-labeled data segmentation alge5000 < pressure< -1500), and the red surface contains values

rithms [3], [21], [24], [32], but the most effective and coram (-3400 < pressure< -1500).
segmentation employed for the analysis of KDE is non-
parametric mean shift clustering [9]. While mean shift cust o o . o
ing can classify and reveal distinct and major modalitiesin ~ distribution, whereis this variable's distribution most
distribution, it can't generate insight into the importaatiable predominant in contributing to the query's KDE?
trends occurring within these regions. For example, givenMean shift clustering can't generate enough insight to amsw
speci c local maxima, or a group of maxima, in a query'shese questions, it can only identify the regions wheregadhm
joint distribution, a scientist may be interested in knogvin  behavior of variables is signi cant. Hence, for Query-Qmiv
Are all variables constrained by the query well repréeVisualization (QDV) applications, mean shift clusteringntt
sented in these distribution features, or only certain @nelselp the scientist progress from stages of visual discowgoy
If certain variables are predominant, which ones and hatages of visual analysis and presentation.
predominant? To help answer these questions and generate deeper insight
Conversely, if a variable's distribution isot strongly into the query’s joint distribution, we present a new segtaen
contributing to speci ¢ modalities in the estimated jointion strategy based on each variable's individual contrdwu



to the query's KDE. Letﬂ denote the estimated univariate
distribution of thej™ variable. We then extract the portion of
the query solutiorQ; associated with variabl¢ as:

Q== p2qQ fj(x> fu(x) 8k6 |

the query solution seQ. Note that in computing the joint
distribution estimate in (4), the univariate distributiocan

be obtained by accumulating the individual Gaussian inner
product terms for eacli—thus the segmentation is obtained
ef ciently, with minimal additional overhead for computai
and storage. Fig. 3. Slices through the velocity (left) and pressure (right)
] ) scalar elds of the hurricane dataset. In Section 4.1 we utilize
Interpreting Segmented Regions these variables in a query that selects regions of low velocity

From a high level the segmented regions visually convey—ihd low pressure.
the comparative context of all other variables constraibgd
the query—the individual signi cance of each variable to the
guery's solution. Visualizing segments concurrently byngs 4 VISUALIZATION APPLICATIONS AND
isosurfaces (see Fig. 4 in Section 4.1, and Fig. 7 in Sect@n 4ANALYSIS

or direct volume rendering showshere the distribution of We apply our new method to two datasets and demonstrate our
each variable is most important in de ning the visual featurab”ity to generate surfaces that bind the query‘s solutdad
trend, or anomaly the scientist has discovered. perform distribution-based segmentation. In the rst epen

Segmented regions, when visualized concurrently withllocgjs segmentation is utilized to re ne the constraints essed
maxima regions in the query's KDE (see Fig. 9 in Seqor our query. In the second example, this segmentation is
tion 4.2), indicate which variables predominantly conit® concurrently visualized with regions of high distributiom

to statistically important features in the query's joinstili-  the query's KDE to identify which variables are predominant
bution. Contrariwise, if a variable distribution /ot strongly jn forming the solution to the query.

contributing to speci ¢ modalities in the estimated joinstali-
bution, segmented regions can also indicate where a vaisabl ,
distributionis most predominant in contributing to the query's4'l Hurricane Dataset
KDE. We illustrate this strategy in Section 4.2 with a me#hanThis dataset was generated by a simulation modeling a hur-
combustion dataset to show that regions correspondingyto hiicane over a 48 hour period. This dataset consists of 13
distribution values in the query are predominantly in uedc variables over a grid size of 300 x 300 x 90, and is composed
by temperatureandCO, behavioral trends, anabt trends due of 48 timesteps. In this experiment, we evaluate a query
to pressure that selects all cells, from a single timestep, where rexord
From a low level, the corresponding range of values f@montain both low pressure, low wind velocity and fall in a
the p2 Qj contain a subset of values for the varialji¢hat broad range of temperature: pressure-350 Pascal AND
are important and signi cant for the user. To attain greatselocity 10 mph AND -70 temperature 20 Celsius. The
insight from the segmented regions, it is therefore impurtaconstraining characteristics of this query roughly apprate
to consider the univariate distribution (i.e. histograrirach the features that classify the hurricane's eye in this datds
variable j as found throughout the query's solution sp&ge our analysis, we will analyze the variable-based segmientat
versus the variable's segmented regiQy. In our analysis of this region, and demonstrate our approach for multiveria
we employ the univariate distribution estimatésfor each query re nement.
segmented regioras it is dened exclusively to Qand We apply our method to the set of points that have been
visualize the corresponding minimum distribution surfate selected by the query after intersecting the regions of low
represent each segmented region. As we show in Sectiort 4. préssure, low velocity, and broad temperature. For ilkiiste
is often the case that the univariate distribution obtafieed; purposes, we see in Fig. 3 slices through the hurricane's
isolates distribution modalities fror®. This observation can velocity (left) and pressure (right) scalar elds. Tempera
then be used to perform multivariate query re nement. Moris not depicted as the query selects all points based onsralue
speci cally, it is possible to re ne constraints over varla j to  for temperature.
focus upon or exclude a modality isolated@jy. We illustrate In Fig. 4a, we see the query solution $@tvisualized by
this re nement strategy in Section 4.1 on a hurricane datasthe minimum distribution surfac&myin,. Here we render our
In this example, we re ne an initial query by using a modalitpurfaces using a traditional Marching Cubes implemeniatio
isolated intemperaturts segmented region. over the raw data of the scalar joint distribution eld. The
We now apply our strategy—using KDE, segmentation, araiirface roughly resembles the center of the hurricane event
guery re nement—to two separate datasets to demonstrate it&4\e next visualize the segmentation that we obtained when
utility in generating greater insight for Query-Driven Wa- constructing the joint distribution for this query. In Figh, we
ization strategies. see the results of the segmentation performed on the query's



(a) Pressure distribution in the query (left) and segmented
region (right).

(@) Minimum distribution (b) Segmented variables in

surface. the query solution.
(b) Velocity distribution in the query (left) and segmented
region (right).

(c) Rened query where (d) Rened query where

the solution surface shows the solution surface shows

the upper region of Fig. 4a. the lower region of Fig. 4a.

Fig. 4. These images depict the surface surrounding a query's
solution set in (a), as well as the segmentation based on
predominant distribution contributions within this query region.
(b) shows regions where pressure (blue), velocity (green, and
rendered transparent), and temperature (red) contribute most
signi cantly to the joint distribution. Images (c) and (d) depict

the result of re ning the original query shown in (a) with the () Temperature distribution in the query (left) and segmented
distribution information gathered for temperature obtained in (b). region (right).

Fig. 5. Based on the example in Section 4.1, these histograms

. .. illustrate (top to bottom) the univariate distributions of pressure,
solution set. In this image there are three well-de ned alsuvelocity, and temperature in the hurricane dataset as found

regions of interest. The blue region corresponds to thesarg@ough a query region (left column) and the regions where
where pressure's univariate distribution contributes hest the respective variables are predominant in the approximated
to the query's joint distrbution. Correspondingly, theegn LT, CIOE, B0 o temperature display vasty
reglons m,dlca,te,‘ areas where velocity play§ tljg mO,St stgmt different r?]odalities; in Section 4.1 we usgthis isolate?j rgtnge 0)11
in uence in raising the values of the query's joint distrtfn.  yat4 to direct re nement of query constraints.

In comparison to these larger surfaces, we see a smaller red

surface at the center of the query's solution set. This regio
corresponds to the areas where temperature plays the mogh comparison to the distributions observed for pressure
signi cant role in contributing to query's joint distribign. and velocity, the distribution for temperature's segmente
_ region (bottom right in Fig. 5) demonstrates the isolatiém o

Analysis distinct modality from the distribution of temperature ebsd
We can interpret the signi cance of these visualizations prough the query's solution space (bottom left in Fig. 5).
analyzing the univariate distribution of each variable s $pecically, the values for which temperature's univagiat
is de ned within the variable's segmented region, versus thistribution most in uences the joint distribution of theiery
guery's solution set. are the range of values between 0 and 20 degrees Celsius.

The left column in Fig. 5 shows the individual distributionsThe strength of utilizing distribution-based segmentatis
of pressure (top), velocity (middle), and temperaturet(on) displayed in this example as the range of values from O-
as they are found within the query's solution set. Thes?0 degrees Celsius is obscured in temperature's observed
histograms indicate that for this solution €gtvalues above - univariate distribution in the query's solution space.
1500 Pascal for pressure, above 5 mph for velocity, and belowlf the user was interested in further exploring this feature
-50 degrees Celsius may play a predominant role in gengratthe distribution of temperature's segmented region inéca
the query's joint distribution. We compare these distiitg clear range of values for re ning the query: Otemperature
to those found in each variable's segmentation, shown At ri20. Resubmitting the original query with this added cornstra
in Fig. 5. now isolates this region, as demonstrated by the surfacersho



Fig. 6. Slices taken for three variables of the methane
combustion dataset. Depicted are pressure (left), temperature
(center), and Carbon Dioxide (right). We utilize these variables
for analysis in Section 4.2.

in Fig. 4d. Alternatively, if the user was interested in extihg
this feature from the query, the user could use the same range
of values to exclude this feature as shown in Fig. 4c.

4.2 Methane Dataset

We apply our distribution and segmentation method to a query
that analyzes a combustion dataset modeling a lean, prdmixe
turbulent methane ame. This dataset incorporates 20 otemi
species and 6 different physical properties (velocity, gem
ature, pressure, etc.). The simulation itself is simulaiada
grid of size 300 x 300 x 300.
In this example, we utilize our method to analyze the data
points selected from a query that constrains regions of high
pressure, high temperature, and regions where the motecula
concentration ofCO, are above trace levels: specically,
pressure 2 atmospheres AND temperature 1000 Celsius
AND CO, 1.0 8. The chemical specie€0O, is a nal
product of the combustion process of methane. The intent
of this query is to extract data that can provide insight into
how regions of increasing pressure and temperature witlgn t
combustion region propagate this chemical species thmughrig. 7. These images visualize statistical data taken from a
the ame. query that evaluates a methane combustion dataset. The image

The respective variables constrained by our query are dé-top depicts a distribution-based surface that surrounds the
uery's solution set. The images at middle and bottom illustrate

plctet()j |n. Flgd' 6', In this gUI'(T,fWB see slices through th‘t{:‘]he segmentation for this query's joint distribution based on
combustion data's pressure (left), temperature (ceneem the maximal contribution of each constrained variable: pressure

CO; (right) concentration scalar elds. (blue), temperature (green), and CO; (red). The gure at bottom,
which, for clarity, does not show pressure and uses a trans-
Analysis parent surface for temperature, highlights the region where CO,

. . . . . ... (red) contributes most signi cantly to the query's solution.
In the top image in Fig. 7, we see the minimum distribution

surface for the query. In the next series of images we see the

segmentation realized during the construction of the dsiery , o
joint distribution. In the middle and bottom images in Fig. 7.€mperature (middie), andO; (bottom) as found within the

the blue surface indicates the region where pressure bargg 9U€ry's solution set. We compare these distributions t@eho

most to the query's joint distribution. Correspondinglpet found in each variable's segmentation, at right in Fig. 8.

red surface indicates the regions whé&®, fundamentally ~ Though not as pronounced as the hurricane example, each

increases the query's distribution. Wrapped betw€én and variable's univariate distribution for their respectivegsnen-

pressure, the segmented region for temperature is showrtdon regions is subtly more re ned. For example, a second

green. For purposes of clarity in viewing tf, region, the modality (top right) has emerged for pressure in Fig. 8 at

bottom image in Fig. 7 doeasot show the surface for pressurethe range of 3 atmospheres. Also, temperature @@gl have

and temperature's surface (green) is rendered transparent no distribution for values less than 1800 Celsius and 0.1
We next observe the univariate distributions for each vafiespectively (unlike the distributions shown at left in F&).

able with respect to the query's solution space, and eachin Fig. 9, we apply the strategy discussed in Section 3.2 and

variable's respective segmentation region. The left colunexamine ranges of higher distribution values in the query's

in Fig. 8 shows individual distributions for pressure (top)oint distribution. In this gure we see slices through the



(a) Pressure distribution in the query (left) and segmented
region (right).

(b) Temperature distribution in the query (left) and segmented
region (right).

(c) CO;, distribution in the query (left) and segmented region
(right).

Fig. 8. These histograms illustrate (top to bottom) the individual
distributions of pressure, temperature, and concentration of Car-
bon Dioxide (COy) in the Methane Combustion dataset as found
through the query region (left column) and the regions where the
respective variables are predominant in the approximated joint
distribution (right column). Note the histograms for each variable
in the right column are more re ned than those based on the
entire query region (left column); speci cally, major peaks for
variables in the left column left have a higher relative distribution
in the right column. Thus the blue (pressure), red (temperature),
and green (Carbon Dioxide) colored regions in Fig. 7 (middle
and bottom) are the areas where there is a narrow and re ned
range of values for each respective variable.

guery solution's segmented regions oriented along the
(left) and Y (right) axis. Here gray regions indicate lower

distribution regions in the query's joint distribution. @ced

regions correspond to areas of higher joint distributiohuea
where pressure (blue), temperature (green), @@ (red)

segmentation occurs. Note the reduced representatioresf p
sure in these images. Contrariwise, note the predominaic
temperature an@0O; indicating these variables, and the valu
corresponding to each variable within its segmentatioay jal

more predominant role in the joint distribution.

5 [IMPLEMENTATION AND PERFORMANCE

r

e.

Fig. 9. Slices oriented along the X (left) and Y (right) axis of
the segmented regions of the Methane dataset. Here segments
for pressure (blue), temperature (green), and CO, (red) are
depicted only for high distribution values. Grey regions indicate
areas of lower distribution values in the query's solution set.

to support interactivity. Distribution estimations withDE

are of orderO(N?) with a straightforward implementation
and can be limiting upon overall performance for lafye
There are methods for accelerating KDE calculations usmg u
front preprocessing, such as the Fast Gauss Transforms [44]
Fast Multipole Method [20], and tree-based strategies;[19]
however, the up-front processing is typically expensive an
is amortized only if the KDE is evaluated frequently over
xed data values. For QDV applications, however, new KDE
must be evaluated with every ad-hoc query, where the size
of N for the KDE will typically be a small fraction of the
total data. Paying a constant preprocessing cost for these
acceleration methods (for a small and varying number of
N) limits their utility for a QDV application. To accelerate
our KDE implementation, we have thus turned to hardware
acceleration.

We have implemented the GPU-based query engine pre-
sented by Gosink et al. [16], [17] to support rapid ad-hoc
gueries on large data sets. In this paper, we also compute the
KDE distribution estimates and surfaces for visualization
the GPU. Our KDE computation takes as input a list of data
samples that pass the query. We launch a GPU thread per data
sample to evaluate the multivariate Gaussian kernel inBy).
keeping the query solution on the GPU we can exploit the
inherent parallelism of the graphics hardware to accedettad
KDE computation, in lieu of transferring the data back tomai
rQemory for CPU computation.

In measuring the performance of our implementation, there
are two factors that affect our timings: increasing sizegioery
solutions sets (i.e. decreasing the query's selectiyitand
increasing the number of variables for the joint distribati
computation. We analyze these two metrics independently by
analyzing increasingly larger subsets of data, in conjanct

e 0

with queries that constrain an increasing number of vagmbl

he performance for this test are presented in Table 1. The
performance times are based on the hurricane dataset which
consists of 8.1 million cells mapped to a 300 X 300 x 90
uniform grid.

QuerY_'Driven ViSL_JaIizat_ion (QDV) demands components thaty guery selectivity is the number of dataset records seldayethe query
are high-performing with respect to computation in ordefrsus the total number of available records in the data.
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TABLE 1
This table depicts the performance times, in seconds, for our
gpu-based distribution estimation implementation. The axis are
decreasing selectivity vs increasing variable count. Times
include the time to access all raw data from CPU-memory, load
the data to the GPU, compute the distribution, determine the
segmentation (for multivariate queries), and write the solution
back to CPU memory.

database into a Vislt viewer. Users will then express and
re ne queries by adjusting individual variable constrainsing
interactive sliders. Assisted by a GPU-accelerated engine
our statistical framework will facilitate the visualizati and
exploration of the various distribution surfaces and segetk
regions within the query's solutions space.
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Herein, we have presented a method that uses a statistiBi work in earlier conversations.
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